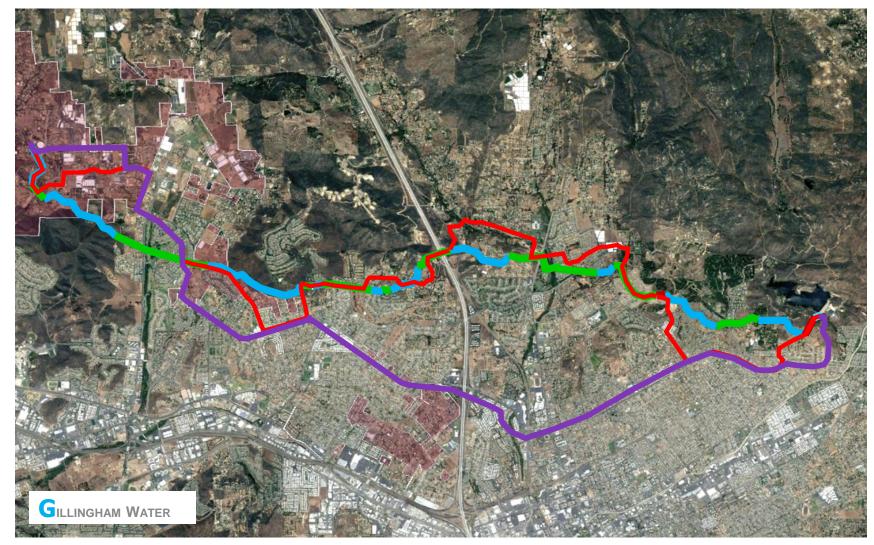

Flume Replacement Alignment Study

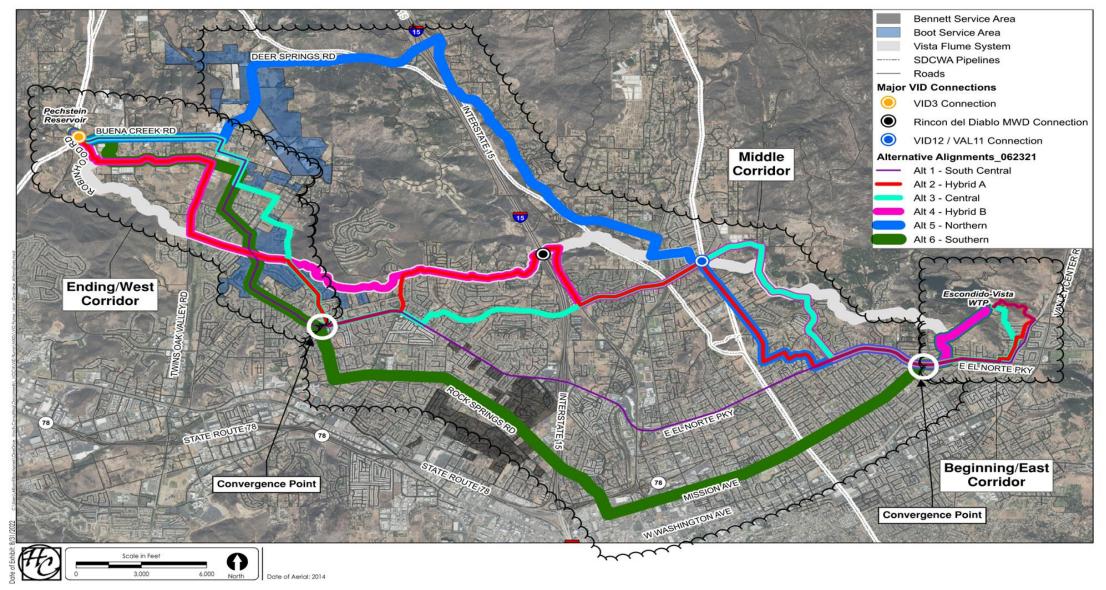
Board Workshop #3 – Fine Screening December 11, 2023

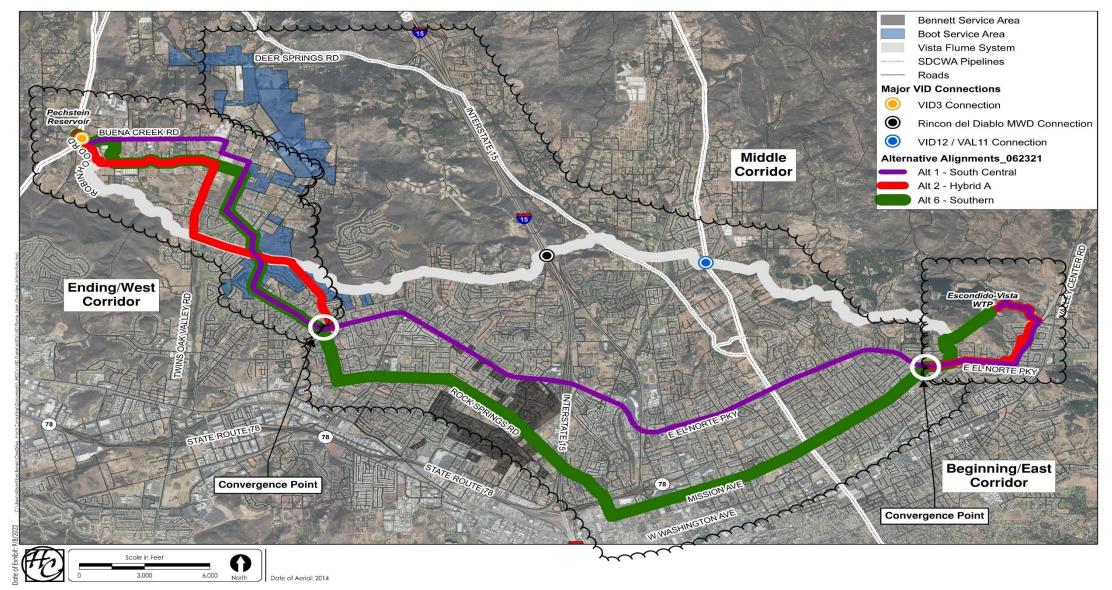

Defining the **next**

Where we came from: To Flume or Not to Flume?

Where we came from: Two Alternatives Captured the Range of Possibilities

Defining the **next** legacy




RESPONSIBLE

AFFORDABLE

This study developed a total of six alignments alternatives.

Coarse screening shortlist; two alignments plus two corridors

Fine screening recommends; <u>Alternative #1 plus One Corridor</u>

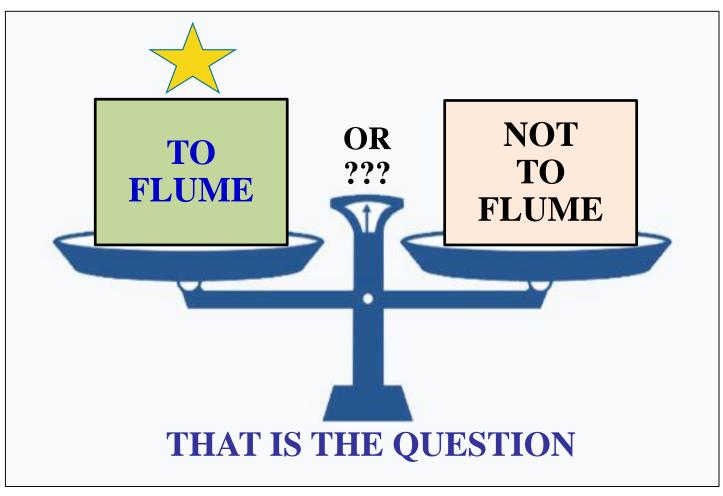


Figure 3-5. Proposed preferred alignment

Predictive climatological modeling supports the To Flume decision for 80% of climate scenarios modeled.

		Anticipated Range of Average Annual Local Yield (AFY) b,c		
Local Water System Investment Scenario	Capital Costs ^a	Dry ^{b,c} (CMCC_CMS RCP8.5)	Baseline ^{b,c} (Historical)	Wet ^{b,c} (CanESM2 RCP8.5)
Scenario #1: Low-range				
 Maintain wellfield as-is; no new wellheads 	\$8M	1,700	2,500	3,000
 No long-term in-lake HABs solution 				
 Respond to HABs using algaecide when needed 				
 No lake bypass pipeline or additional operational flexibility 				
Scenario #2: HABs Control Only				
Replace wellheads as-needed to preserve historical yield	\$13M	1,900	2,700	3,300
 Implement long-term in-lake HABs solution 				
 Preventative HABs control using chemical treatment 				
 No lake bypass pipeline or additional operational flexibility 				
Scenario #3: Baseline or "Mid-Range"				
 Optimize wellfield to achieve the historical, and can achieve sustainable yield over 12-months^d 				
 Implement long-term in-lake HABs solution 	\$23M	4,700	5,600	7,500
 Preventative HABs control using chemical treatment 				
 No lake bypass pipeline or additional operational flexibility 				
Scenario #4: Max. Allowable Sustainable Yield				
 Maximize wellfield to achieve allowable sustainable yield e 				
 Implement long-term in-lake HABs solution 	\$37M	5,400	6,200	7,800
 Preventative HABs control using chemical treatment 				
 No lake bypass pipeline or additional operational flexibility 				
Scenario #5: High-range				
Maximize wellfield to achieve allowable sustainable yield	\$57M	6,900	7,200	7,900
 Implement long-term in-lake HABs solution. 				
Preventative HABs control using chemical treatments				
 Install a lake bypass pipeline for additional operational flexibility 				

Despite escalating costs, need for financing, and future local water system investments, **the decision** <u>**To Flume</u></u> still maintains the economic advantage.**</u>

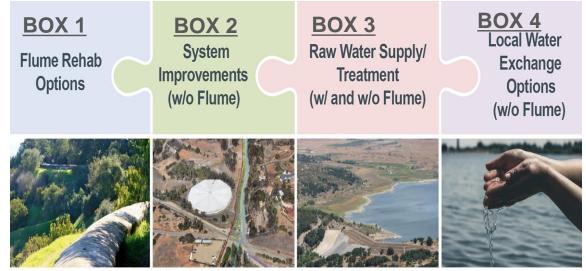
Workshop Objectives

- Report on work completed to-date
 - field investigations and alternatives analysis
 - fine screening evaluation results and shortlist
 - predictive climatological modeling
 - cost & affordability check
- Obtain Board's feedback on work performed and recommended next steps
- Reach consensus on:
 - advancing study to Phase 5 Recommended Alignment Report

Agenda

- 1. Introduction and Objectives
- 2. Overview of Shortlisted Alternatives
- 3. Alternatives Evaluation Fine Screening
- 4. Predictive Climatological Modeling
- 5. Project Affordability Update
- 6. Conclusions & Next Steps

1. Introduction and Objectives


Speaker: J.P. Semper, P.E.

Where we came from: To Flume or Not To Flume?

- WSPS, which concluded in Jan. 2020, Four "Boxes" were evaluated
- 2 alignment alternatives defined the range of the "To Flume" project
- Determined "To Flume" was most favorable option

Next Steps: To Flume				
Action	Schedule / Budget			
1. Alignment Study	18-24 months \$0.75M - \$1.25M			
2. Environmental Documentation	18-24 months \$0.75M - \$1.25M			
3. Financial Planning	12-18 months \$0.1M - \$0.25M			
 4. Miscellaneous • Average Local Yield: Refine estimates 	12-18 months \$0.1M - \$0.25M			
TOTAL	24-36 months \$1.7M - \$3M			

Where are we headed: How to Flume?

PLANNING FACTORS:

- feasibility and cost-effective construction
- reliability
- environmental effects

- long-term operations and maintenance (O&M)
- affordability, impacts to rates, and funding options
- *NEW* predictive climatological modeling

RESPONSIBLE

Where are we headed: How to Flume?

SUCCESS FACTORS:

- Consider a reasonable range of potentially feasible alternatives that will foster informed decision-making and public participation, per CEQA.
- Avoid surprises related to feasibility or cost that unexpectedly tips the scale on the "To Flume or Not to Flume" decision by regularly tracking pertinent cost data and preparing more detailed construction cost estimates.
- Support the District's decision to replace the Flume by presenting a clear project roadmap in a preliminary design report that includes a project funding plan for the preferred alignment.

Where are we headed: How to Flume?

PLANNING OBJECTIVES:

- 1. Alignment Criteria and Alternatives Evaluation
- 2. Funding Support
- 3. Project Affordability Checks

- 4. Assess Potential Environmental Impacts
- 5. Convene Multiple Workshops with the Board

Defining the **next** legacy

Recap of Board Workshop #1

CONCLUSIONS:

- 1. Six alignments have been developed
- 2. <u>To Flume</u> continues to be economically preferred
- 3. Retiring the Flume remains a high priority
- 4. Advancing financial planning for this project would be prudent

"For Workshop No. 2, we will prepare a discussion related to project affordability, funding opportunities, prioritization within the District's Capital Improvement Plan (CIP), and next steps for preparing the District in securing financial assistance may it be through grants or loans."

NEXT STEPS:

- 1. Collect detailed data for the six alignments
- 2. Develop capital costs for the six alignments
- 3. Conduct Coarse Screening and shortlist top 2-3 alignments
- 4. Begin preliminary financial planning to understand the cost of funding
- 5. Repeat the affordability check with refined information
- 6. Report back to the Board at Workshop #2

Recap of Board Workshop #2

CONCLUSIONS:

- 1. Alternatives 1 & 6 plus two corridors shortlisted for Fine Screening
- 2. PAYGO is no longer an option and capital financing is needed
- 3. To Flume retains significant cost advantage over Not To Flume
- 4. Investing in the local water system will improve local yield and improve the economic advantage

"For Workshop No. 3, we will prepare a climatological model that will consider a range of possible local yields based on varying climate scenarios."

NEXT STEPS:

- 1. Proceed with Fine Screening
- 2. Continue investigating HABs mitigation and wellfield optimization
- 3. Perform predictive modeling of future yield
- 4. Hire municipal 'financial' advisor
- 5. Continue collecting data required for environmental documents
- Conduct another Affordability Checkin and report back to the Board at Workshop #3

Where are we today: Phase 4 – Fine Screening

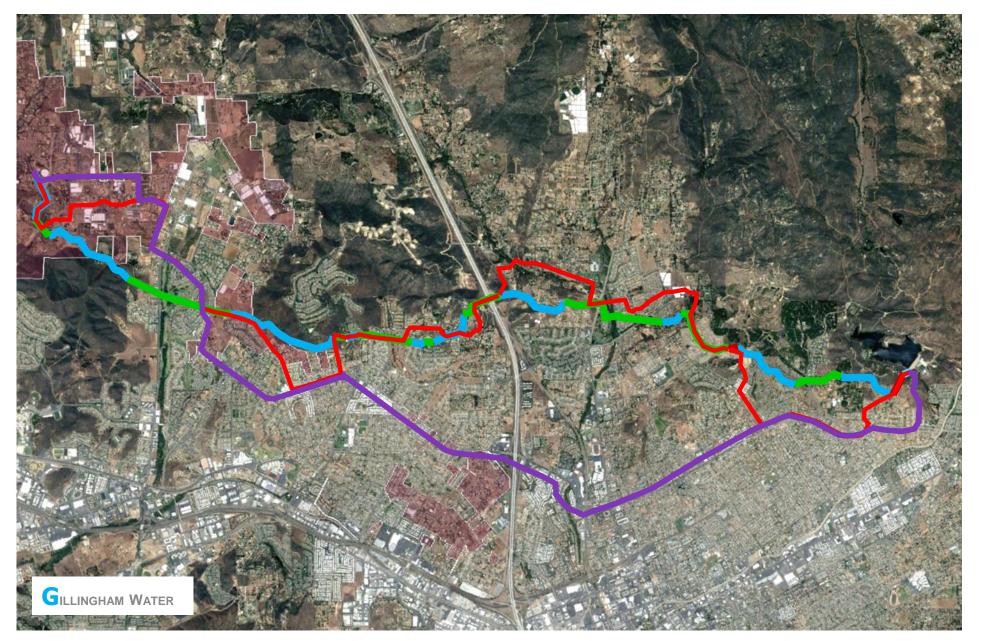
- 1. Conducted field investigations and collected additional data on the shortlisted alignments.
- 2. Updated planning level cost estimates for each alignment.
- 3. Refined evaluation criteria and performed Fine Screening.

- 4. Selected and recommended one preferred alignment.
- 5. Completed affordability check-ins confirming the <u>To Flume</u> decision.
- 6. Conducting final Board workshop.

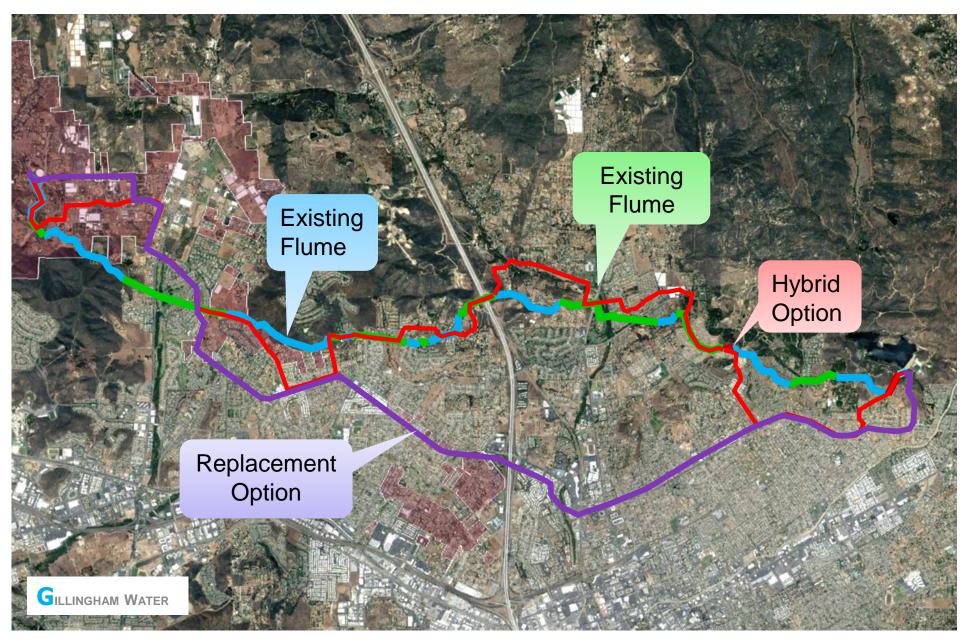
What's Next?

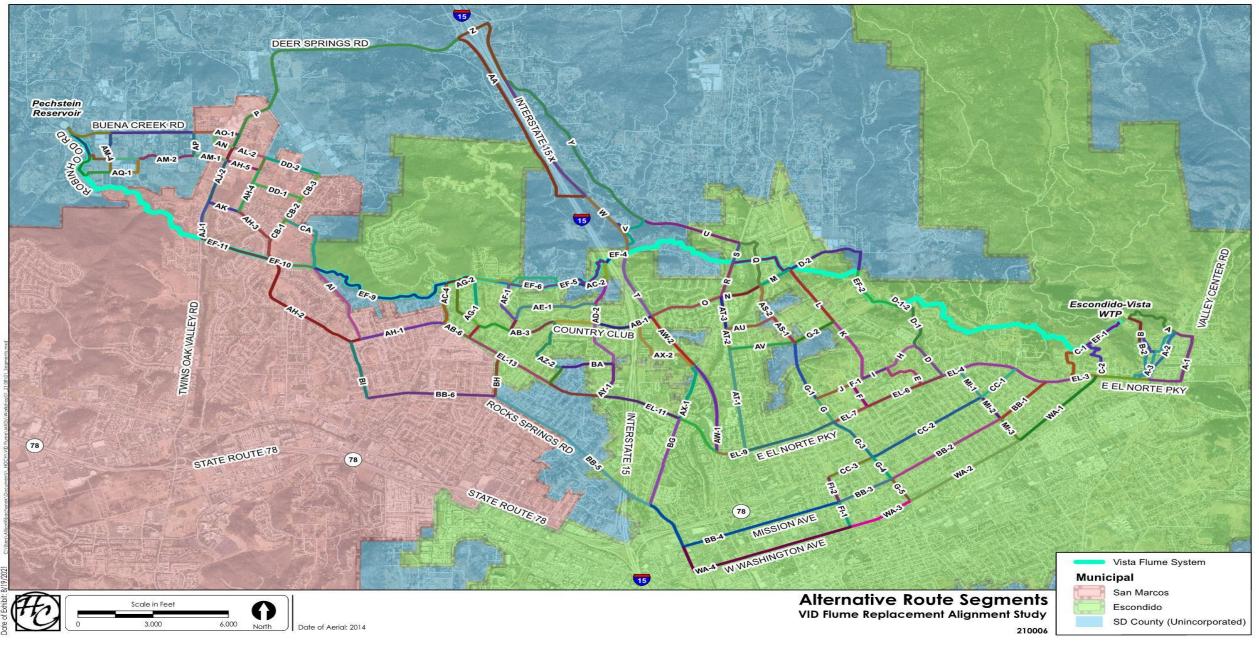
Complete the Study under,

Phase 5 - Recommended Alignment Report (RAR)

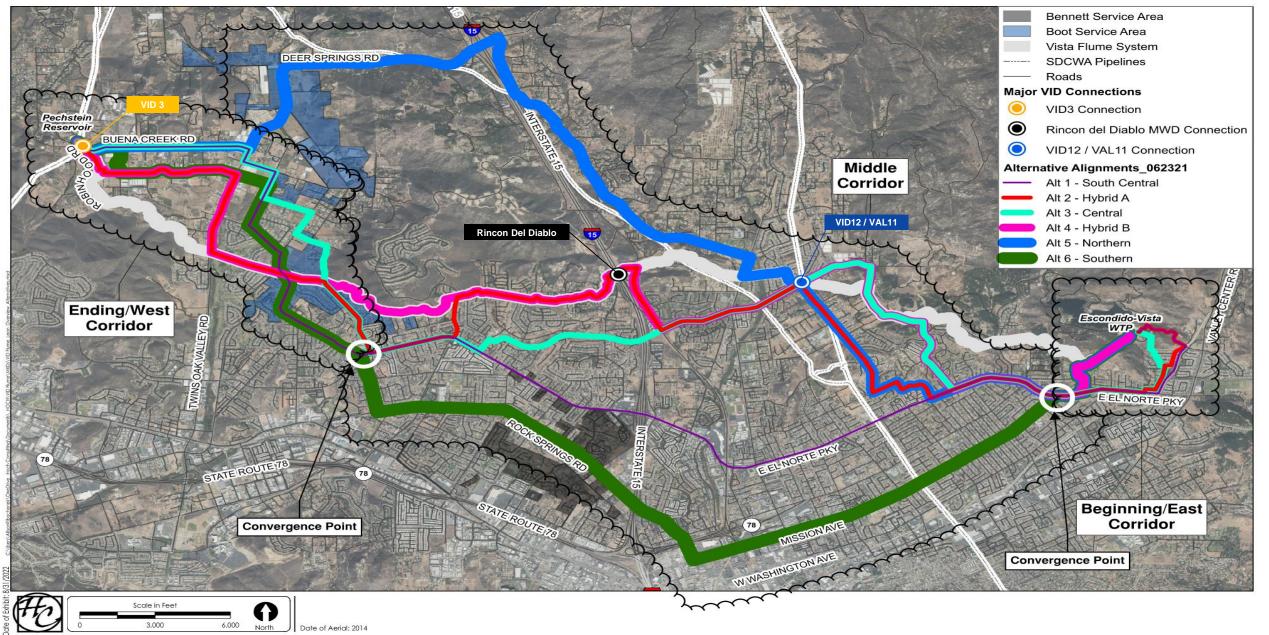

2. Overview of Shortlisted Alternatives

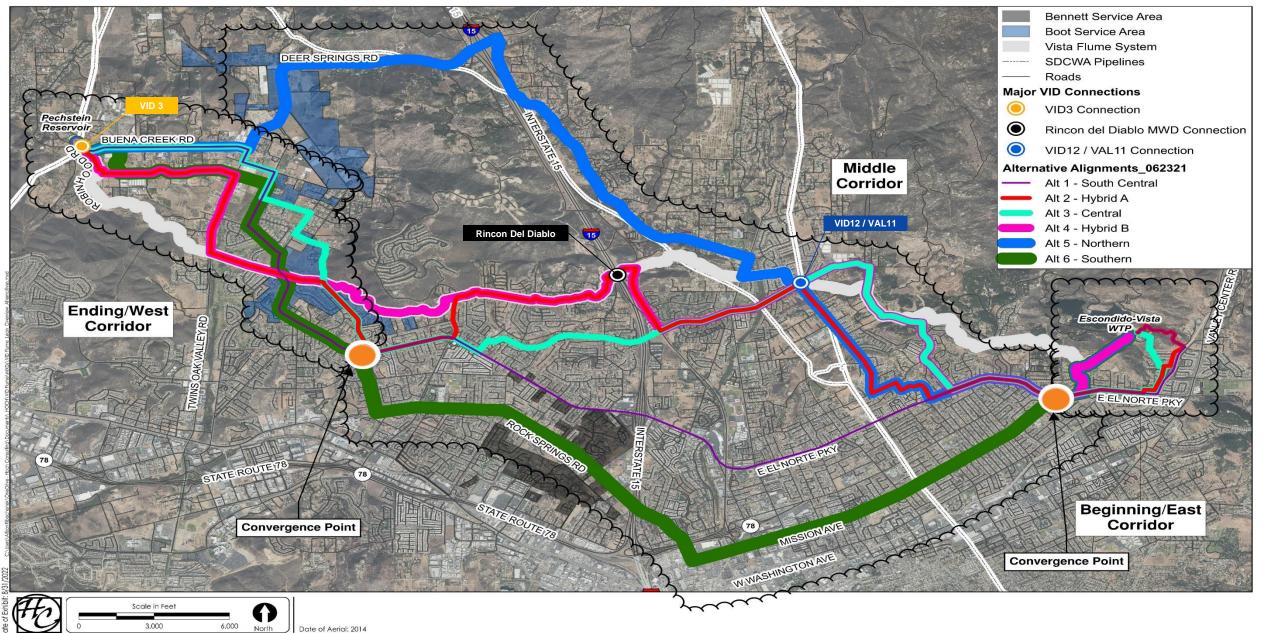
Speaker: Octavio Casavantes, P.E.

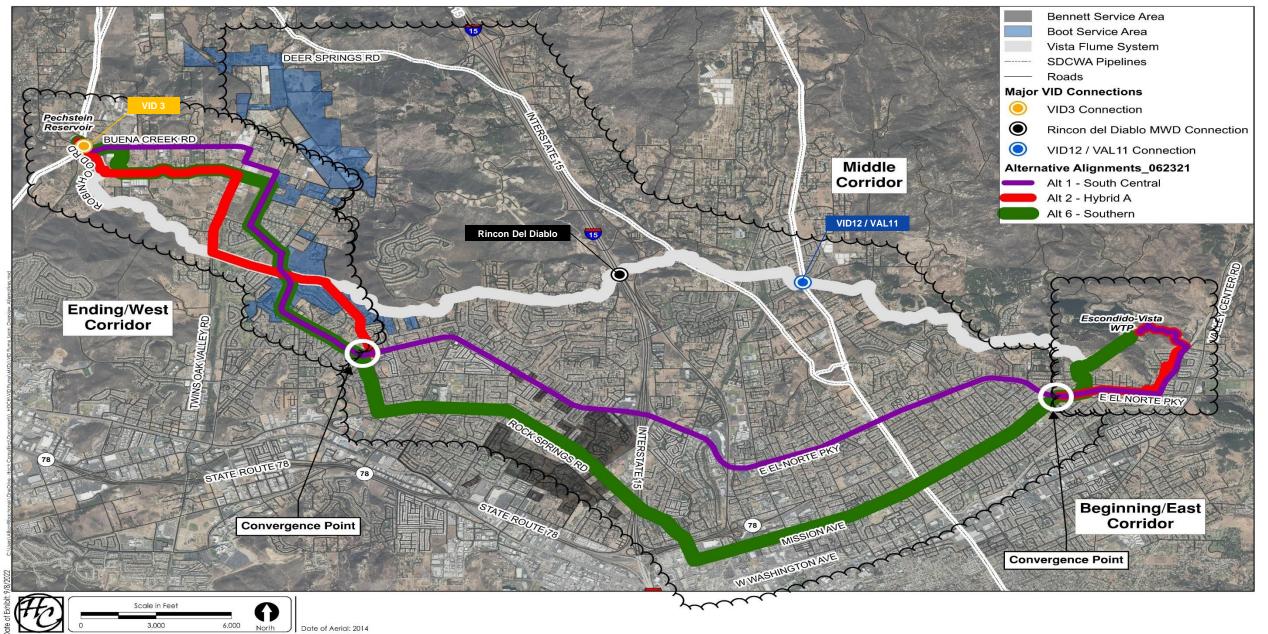



WSPS Alternatives: captured a wide-range of "replacement" costs

WSPS Alternatives: captured a wide-range of "replacement" costs


Constructible Corridors: total of 158 segments evaluated


Constructible Corridors: preferred segments identified


Alternative Alignments: a total of six were identified

Keeping our options open with a Beginning, Middle, and End

Coarse Screening: two alignments shortlisted plus two corridors

A comprehensive dataset to support Fine Screening

- Site/Community Characteristics
 - Schools
 - Fire Department
 - Parcel/Property owners
 - Existing utility records
 - ROWs and Easements
- Traffic
 - Routing studies
 - Road classification
 - Speed limits
 - Traffic
- Environmental
 - Vegetation maps
 - Conserved lands
 - Cultural
 - Draft MSCP

- Geology
 - Groundwater maps
 - Liquefaction maps
 - Field Rock Classifications
 - USGS Hydrologic Data
 - Fault maps
 - Creeks
 - Flood maps
- Interagency
 - CIP plans
 - CWA aqueduct maps
 - Freeway crossings
- Permitting
 - DDW Regulations
 - Jurisdictional areas
 - Wetlands
 - Waters of the U.S.
 - Sensitive/protected species & vegetation

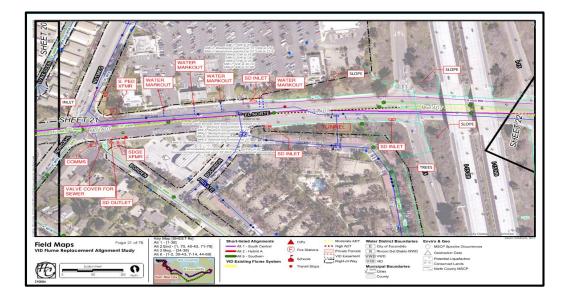
- Hydraulics
 - Existing VID system
 - Pechstein Reservoir
 - EVWTP
 - New facilities
- 0&M
 - WTP Operations
 - Site access
 - Agency connections
 - Local agreements
 - Boot & Bennet service areas
- Cost/Affordability
 - Funding Sources
 - Pavement Moratoriums
 - Utility Conflicts

Digitized field data and desktop analyses for the District's project file and future use in design

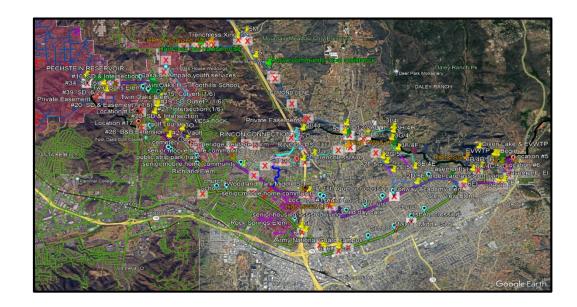
Geotechnical

- Borings and geophysics
- Hardrock rippability
- Groundwater and liquefaction
- Environmental prescreen

Site Walks


- Access and constructability
- Surface features & utility conflicts
- Traffic and community impacts
- Public/Private | Commercial/Residential

Digitizing the data for Fine Screening & the District's Record


GIS & PDF

- Utility record drawings
- Capital Improvement Plans
- Environmental
- Geotechnical, Land Use & Traffic

Google Earth

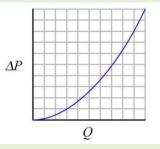
- Database of Maps
- Geotechnical & Environmental
- Land Use & Traffic
- Utilities

Stakeholder engagements continued through Fine Screening

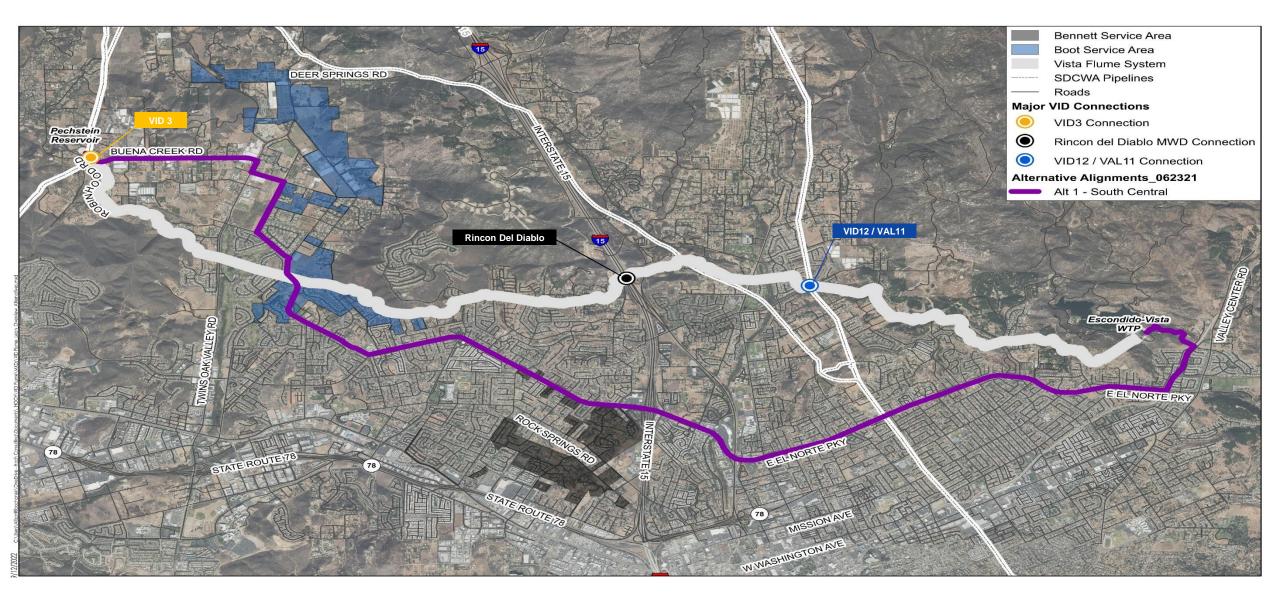
Key stakeholder engagements

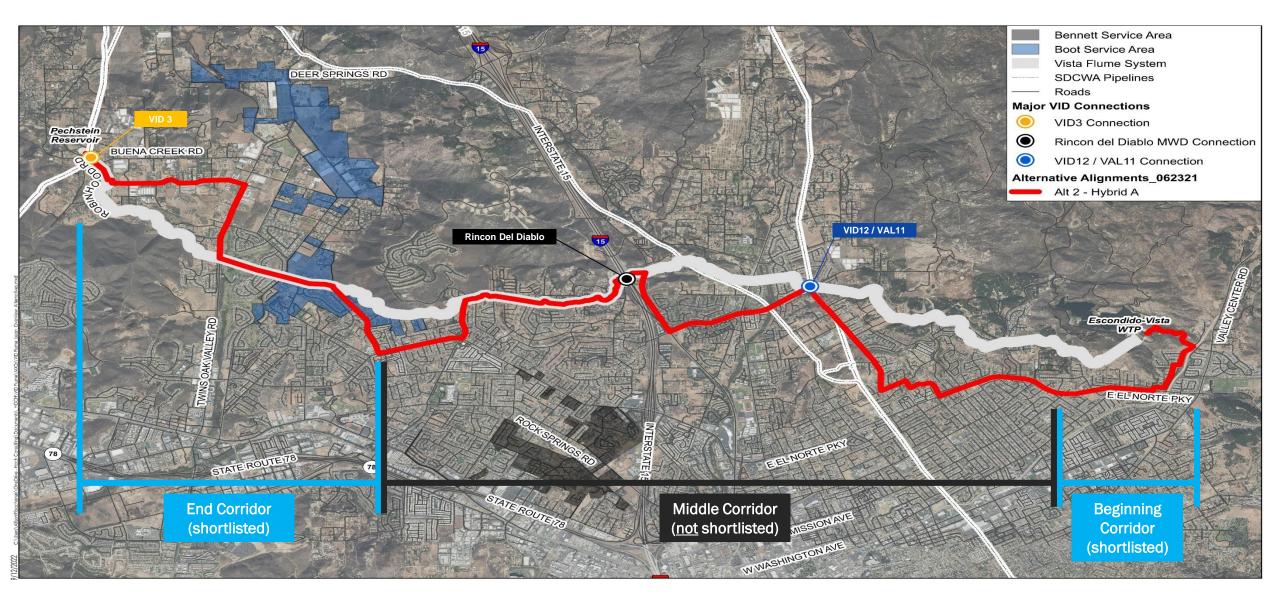
- City of Escondido Public Utilities & Engineering
- EVWTP operations staff
- Rincon Del Diablo MWD
- DDW
- Other agencies (e.g., Caltrans, County of SD, SDG&E, etc.)

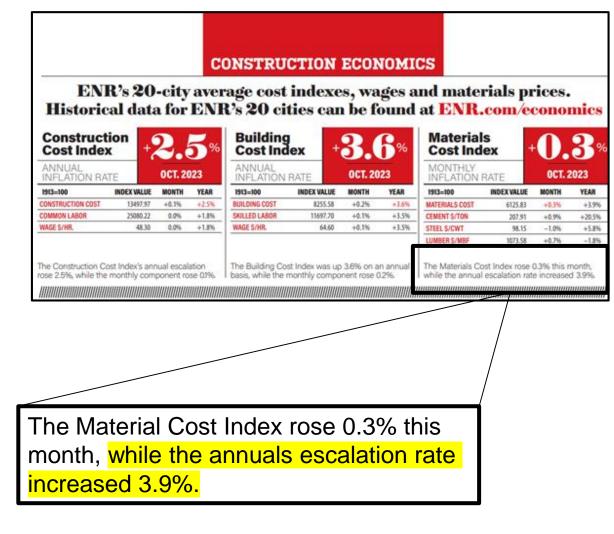
Hydraulics (District's Operations)


- Meeting regulatory requirements
- Long-term operations and maintenance

• Permitting


- Environmental CEQA
- Construction County, City, etc.
- Operating DDW


Fine Screening: Alternative #1 – South Central


Fine Screening : Alternative #6 – Southern

Fine Screening : Alternative #2 – Hybrid A

Industry costs are leveling but escalation is still a factor

MARKET (ENR)

- 20% annual escalation (last year)
- 4% annual escalation (this year)
- FRAS (ESTIMATE)
 - **10%** with project refinements (last year)
 - **5.9%** with project refinements (this year)

Planning Level Costs Refined to Within +/- 2%

Table 2-3. Planning Level Estimated Costs					
	Alt 1	Alt 2	Alt 6		
	South Central	Hybrid A	Southern		
Construction Costs a,b	\$129 M	\$122 M d	\$131 M		
Soft Costs °	\$51 M	\$54 M ^d	\$52 M		
Total	\$180 M ^e	\$178 M d	\$183 M		

a. All costs presented herein are in 2023 dollars and have been rounded to the nearest \$1 million.

b. Includes labor, materials, subcontracts, equipment, and contractor overhead and profit.

- c. Includes environmental permitting, easements, design, administration, third party construction management, and onsite environmental and cultural monitoring.
- d. Alternative 1 Middle corridor cost was added to Alternative 2 Beginning and End Corridors to facilitate a "full alignment" cost comparison. Alternative 1 was selected because it is the preferred Middle corridor from Fine Screening.
- e. Estimated costs for the preferred alternative recommended in Section 3.2 below.

Orange = recommended alignment

Alignment Evaluation Takeaways

DEER SPRINGS RD

Summary

Pechstein Reservoir

End

Co

cole in Fi

- The shortlisted alignments remained as viable alternatives; no fatal flaws were discovered.
- Costs continue to escalate but are now closer to industry norms; for 2023 the Flume's replacement is estimated in the order of \$180 million.
- The data collection performed in this phase added confidence in the
 Fine Screening results by enhancing the details associated with the
 constructability and cost of implementing a Flume replacement project.

W WASHINGT

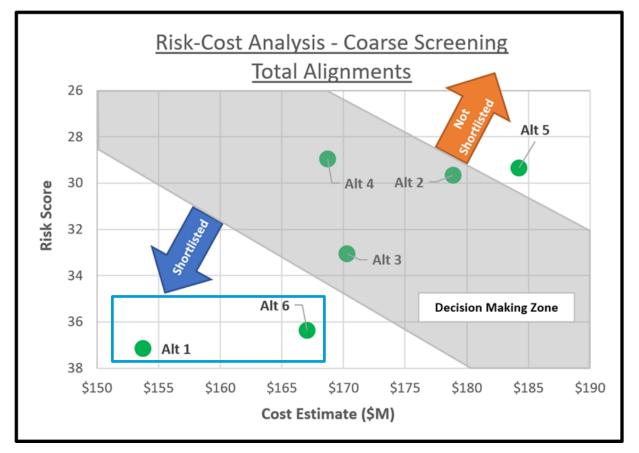
Bennett Service Area Boot Service Area Vista Flume System **SDCWA** Pipelines Roads VID Connections VID3 Connection Rincon del Diablo MWD Connection VID12 / VAL11 Connection ative Alignments 062321 Alt 1 - South Central Alt 2 - Hybrid A Alt 3 - Central Alt 4 - Hybrid B Alt 5 - Northern Alt 6 - Southern YYYY Escondido-Vista WTP EL NORTE PH

> Beginning/East Corridor

Convergence Point

0 North Date of Aerial: 2014

3. Alternatives Evaluation – Fine Screening


Speaker: John Bekmanis, P.E.

Brown AND Caldwell

Fine Screening: Process and Objectives

- Goal: select one preferred alignment
- Evaluation process included development of:
 - Risks constructability, O&M, etc.
 - Costs capital and soft costs
- Risks Assigned weighting factors and scores to custom set of criteria
- Conducted sensitivity analysis

Fine Screening: Evaluation Criteria (Part 1/3)

CATEGORIES	CRITERIA GROUPS	CRITERIA
	Community Impacts	 Traffic Impacts Future Agency Projects Impacts to Critical Facilities
	Land Ownership	Easements/ROWs
Stakeholder Coordination	Environmental	 Biological Resources Areas of potential Soil Contamination Cultural Resources Other CEQA Considerations
	Permitting	 Interagency Coordination Special Long-lead Permits (Cal DFW/USACE) DDW Coordination

Fine Screening: Evaluation Criteria (Part 2/3)

CATEGORIES	CRITERIA GROUPS	CRITERIA
	System Hydraulics	Pressurization vs Low-HeadTransient Flow Impacts
System Reliability	Operations and Maintenance	 Accessibility Land Use Operational (Hydraulics) Maintenance Impacts to EVWTP Agency Service Connection – Boot & Bennett Agency Service Connection – Escondido Agency Service Connection – Rincon

Fine Screening: Evaluation Criteria (Part 3/3)

CATEGORIES	CRITERIA GROUPS	CRITERIA
Duciont	Constructability	 Geology Utility Congestion Alignment Length Additional LF for Boot & Bennett Connection Crossing/Construction Methods Tunneling Lengths
Project Delivery	Schedule and Risk	Schedule FactorsPhasing/SequencingLong-term Vulnerability
	Project Affordability and Implementation	 Financial Exposure to Construction Costs Mitigating Revenue Reduction (purchase from other agency) Pavement Moratoriums

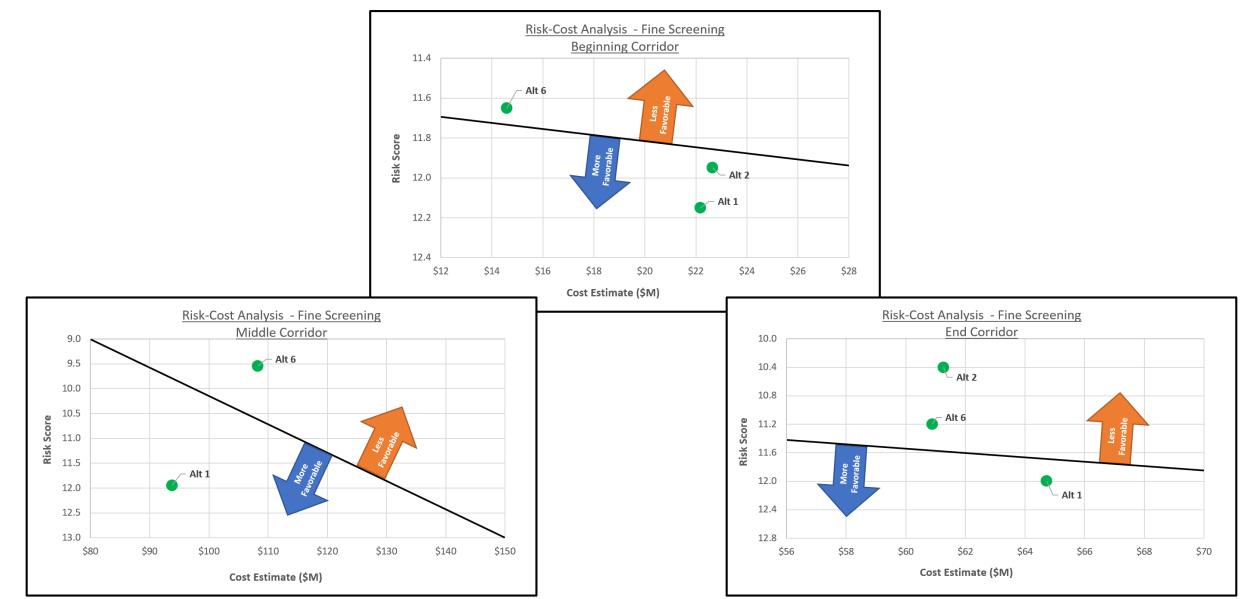
Fine Screening: Evaluation Matrix

Categories	Criteria Groups	Criteria	Alternative Alignments Beginning Corridor			Alternative Alignments Middle Corridor		Alternative Alignments End Corridor		
			1 Raw Score	2 Raw Score	6 Raw Score	1 Raw Score	6 Raw Score	1 Raw Score	2 Raw Score	6 Raw Score
		Geology	3	1	5	1	3	3	5	3
		Utility Congestion	1	3	5	3	5	3	5	3
	Construct Lillion	Alignment Length	3	1	5	5	1	1	5	3
	Constructability	Additional LF for Boot & Bennett Connections	0	0	0	0	0	3	5	1
		Crossing/Construction Methods		5	5	5	1	5	1	5
		Tunneling Length	5	5	5	1	1	3	1	3
	SU	BTOTAL (weighted) - Constructability	2.6	2.3	3.8	2.3	1.7	2.7	3.3	2.7
PROJECT DELIVERY		Schedule Factors	3	3	5	5	1	1	5	3
	Schedule and Risk	Phasing/Sequencing	3	5	3	3	3	3	5	3
		Long-Term Vulnerability	1	3	5	3	5	3	5	3
	SUBT	OTAL (weighted) - Schedule and Risk	0.7	1.1	1.3	1.1	0.9	0.7	1.5	0.9
		Financial Exposure to Construction Costs	3	1	5	5	1	1	5	3
	Project Affordability and Implementation	Mitigating Revenue Reduction (purchase from other agency)	5	5	1	5	5	5	1	5
		Pavement Moratoriums	5	5	5	1	3	3	1	3
	SUBTOTAL	(weighted) - Proiect Affordability and	3.3	2.8	2.8	2.8	2.3	2.3	1.8	2.8
	CATEGORY SUBTO	TAL - PROJECT DELIVERY	6.5	6.1	7.8	6.1	4.8	5.7	6.6	6.4
							_		-	

Fine Screening: Summary of Numerical Results

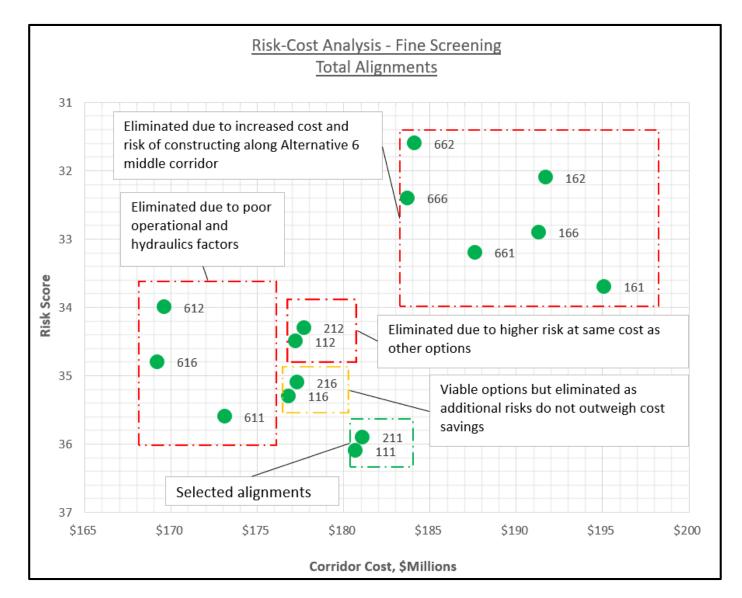
- Alternatives 1 has the best Beginning, Middle, and End Risk Ranking
- Beginning corridor of Alt 2 has possible advantages

Table 3-2 Risk Ranking per Segment							
		Alt 1		Alt 2	Alt 6		
Corridors		South Central		Hybrid A	Southern		
Reginning	Rank ^a	#1		#2	#3		
Beginning	Score ^b	12.2		12.0	11.7		
Middle	Rank ^a	#1		Was not	#2		
Midule	Score b	12.0		shortlisted	9.3		
End	Rank ^a	#1		#3	#2		
Ellu	Score ^b	12.0		10.4	11.2		

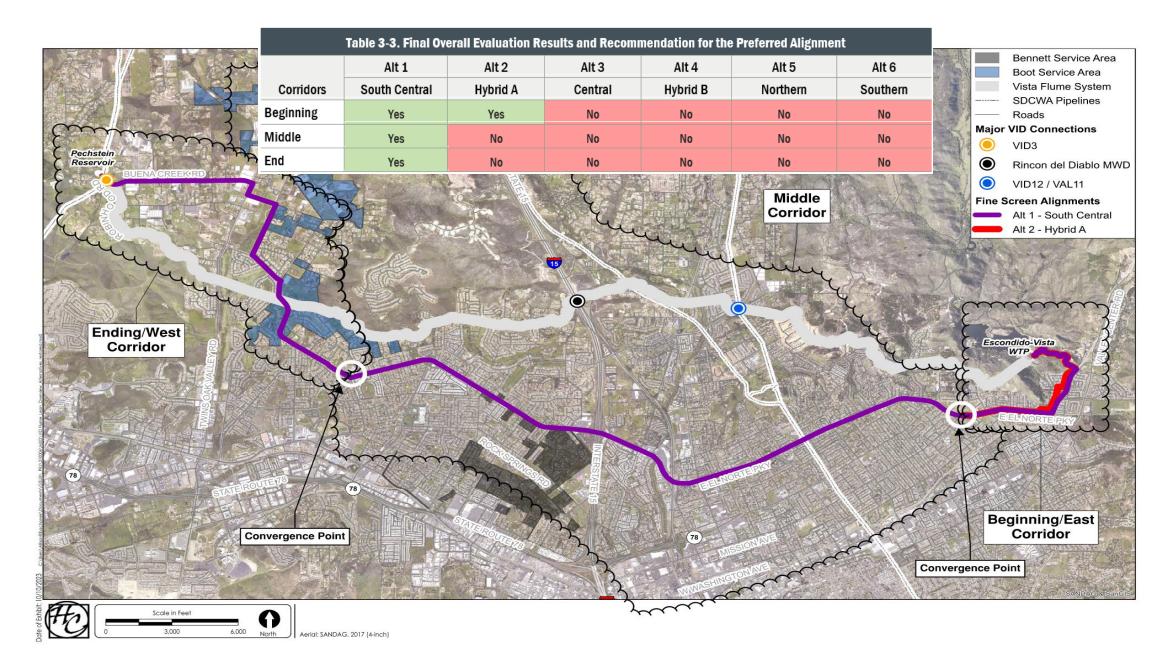

a. Ranking:

Green = Top ranked alternatives

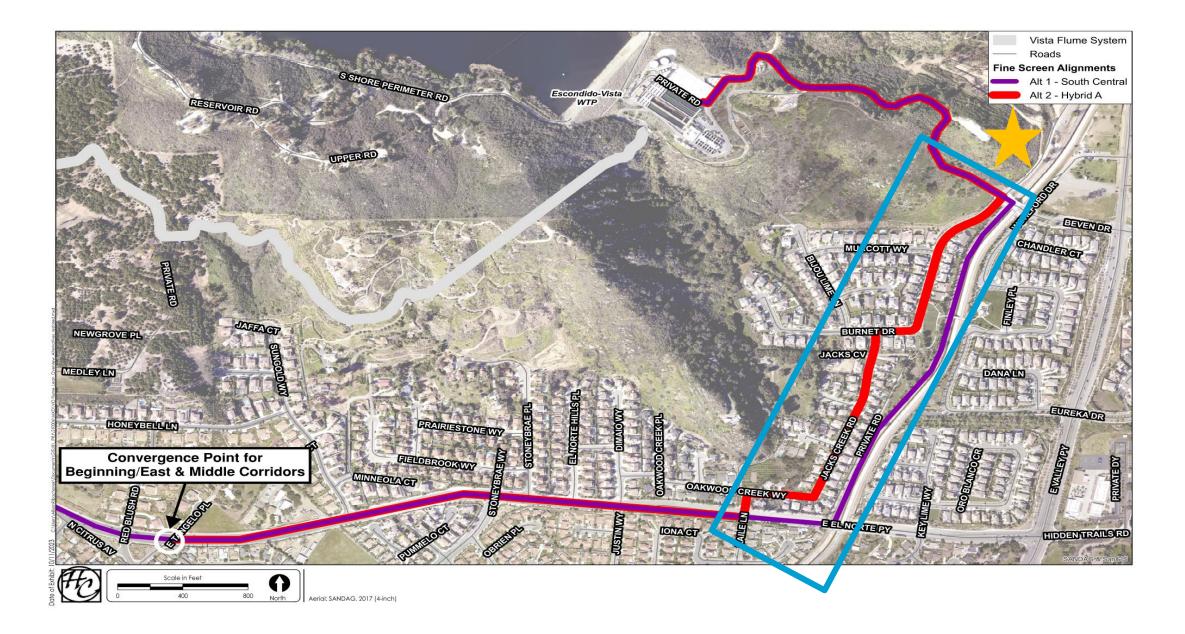
Yellow = Middle ranked alternatives


Red = Lowest ranked alternatives

Fine Screening: Results Isolated by Beginning, Middle, End

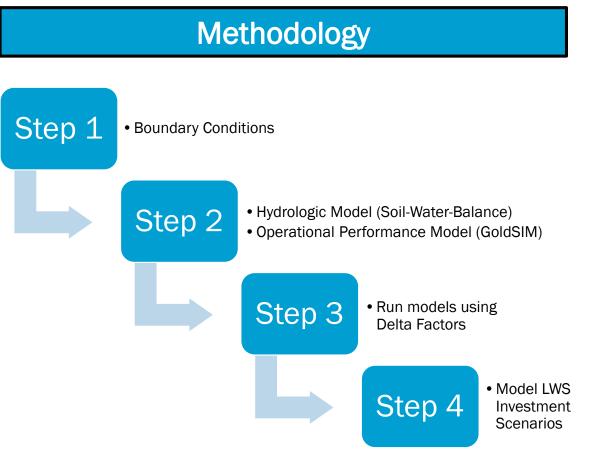


Fine Screening: Results (All Combinations)


- Alt 1.1.1 and 2.1.1 provide balanced cost vs risk rating
- Top right grouping high in risk and costs
- Bottom left grouping lower cost but higher risks
- Center groupings higher risk vs same cost as selected alignments

Recommended Alignment

Reserving Alternative 2 Beginning as a Contingency


4. Predictive Climatological Modeling

Speaker: Teresa (Tess) Sprague, PhD

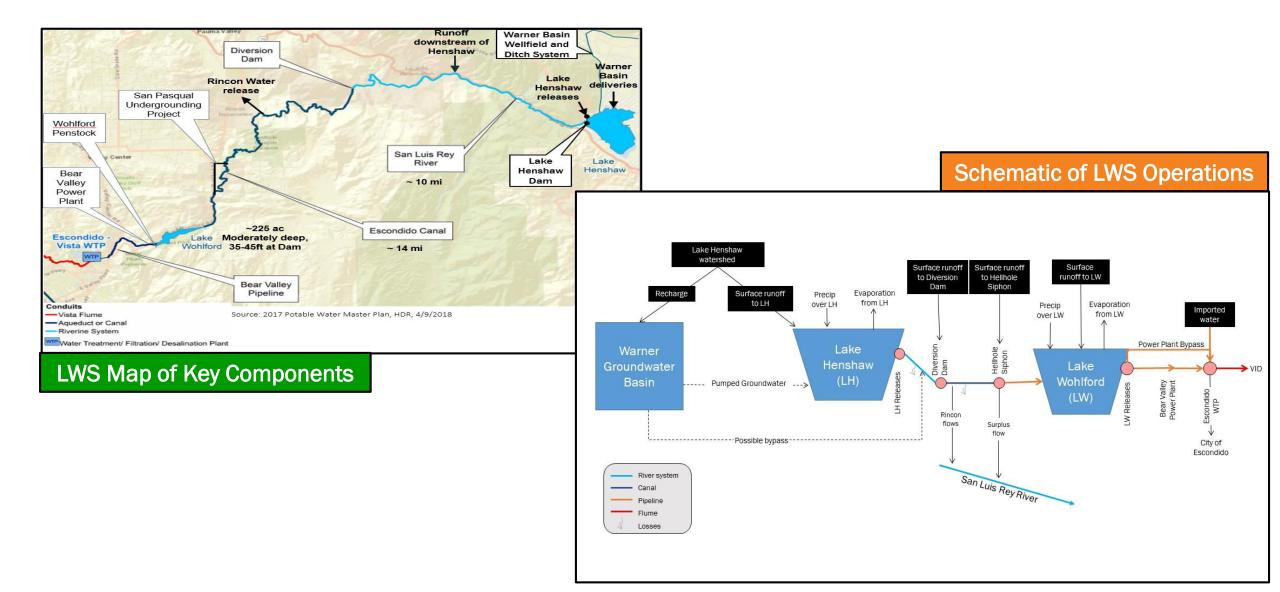
<u>Objective</u>: Project annual local yield under varying climate futures considering various Local Water System (LWS) improvements

<u>Step 1:</u>

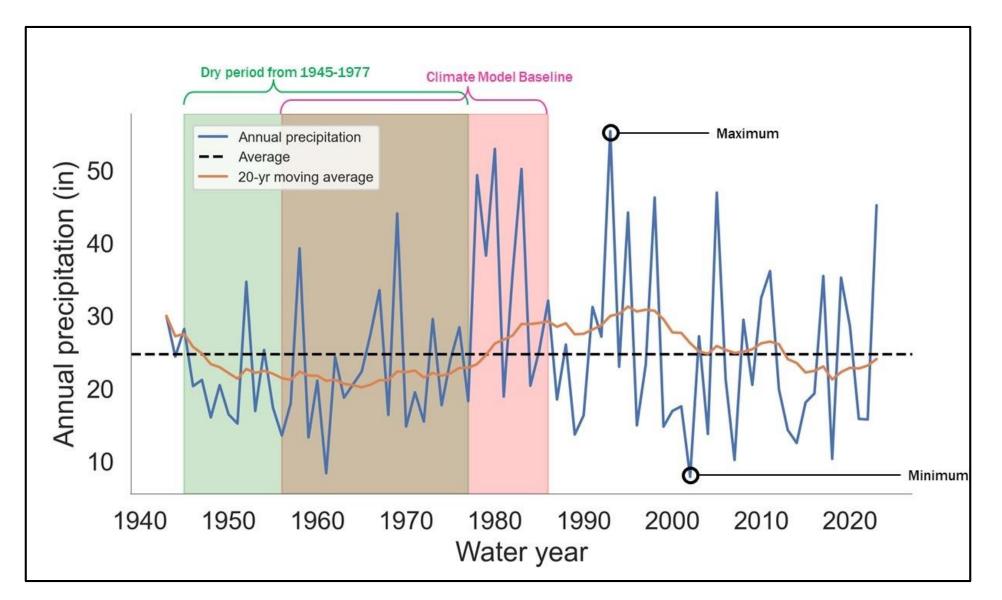
Define the system and establish its boundary conditions to account for all infrastructure components, interconnects, and sources of inflows and outflows.

<u>Step 2:</u>

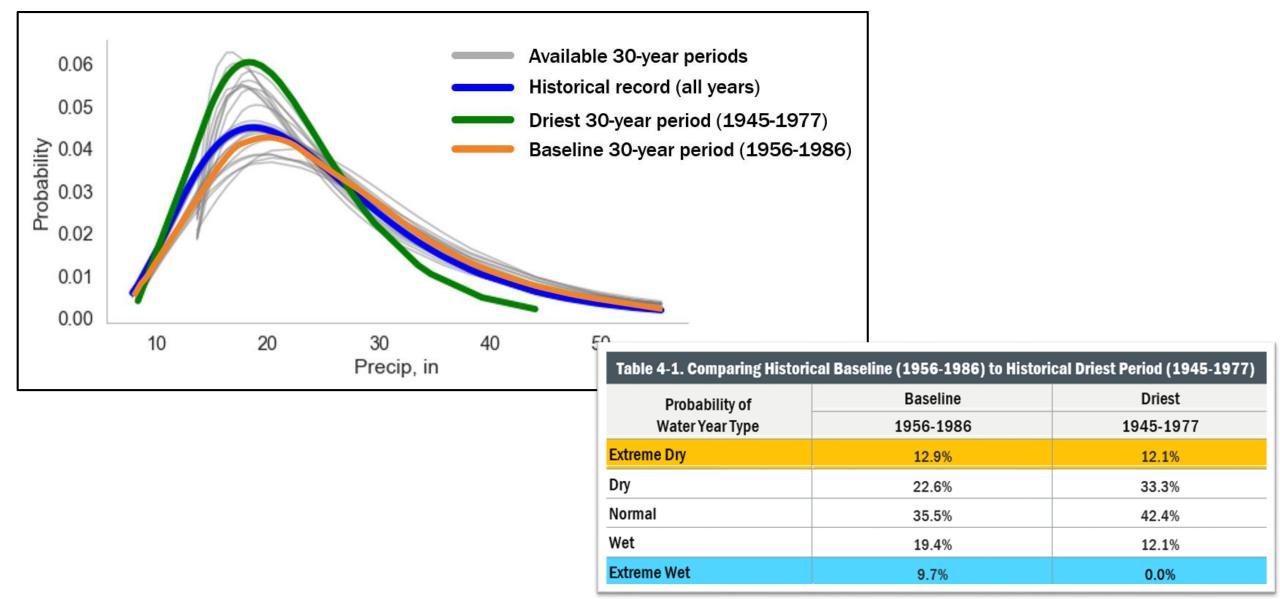
Build two models that together can simulate the local hydrology and baseline the current operational performance of the LWS.


<u>Step 3:</u>

Run the model using climate change adjustment factors to assess possible climatological impacts on local yield.


Step 4:

Model future LWS investment scenarios to assess the effects projects like expanding the Warner Basin wellfield or addressing Harmful Algal Blooms (HABs) might have on future local yield.


Establishing Boundary Condition by Capturing the District's LWS

Study Precipitation to Establish a Climate Model Baseline

Using Probability Statistics to Confirm the Baseline

Delta Change Factors: Models Drier and Wetter Conditions

Data Source:

- Cal-Adapt portal
- Downscaled CMIP5 climate data
- Data Used:
 - "Dry" (CMCC_CMS RCP8.5)
 - "Baseline" (Historical) no delta factor necessary
 - "Wet" (CanESM2 RCP8.5)
- Objectives for Use:
 - Model emission factors to establish a range of climate futures
 - Scale baseline to dry & wet scenarios

cal-adapt

💿 🚯 🌗 🎲 😔

Explore and analyze climate data from California's Climate Change Assessments

Cal-Adapt provides the public, researchers, government agencies and industry stakeholders with essential data & tools for climate adaptation planning, building resiliency, and fostering community engagement.

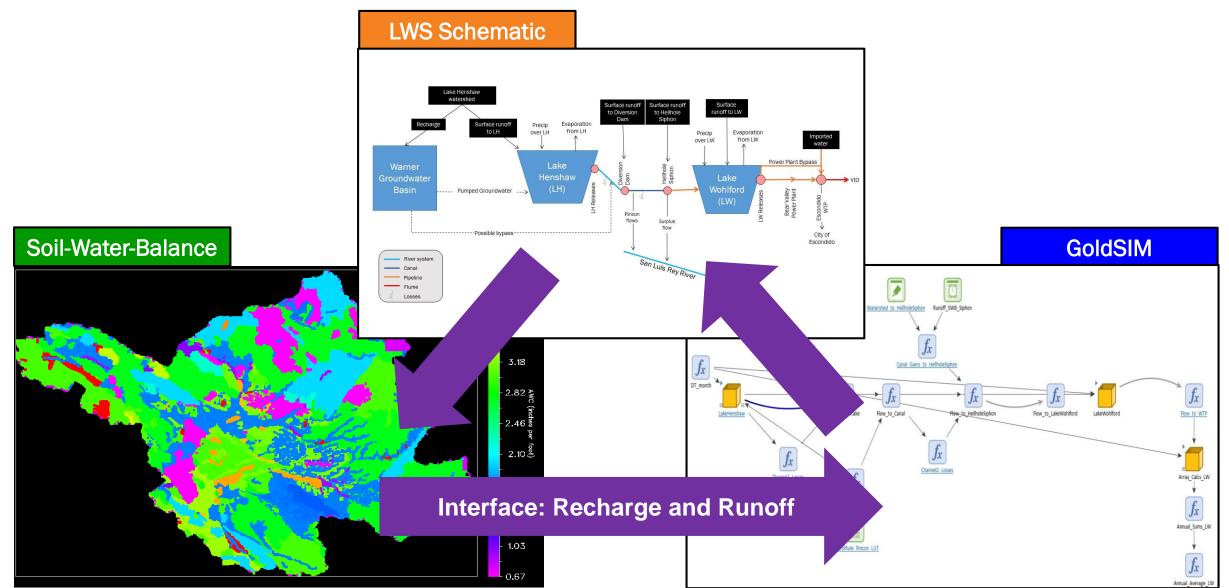
Cal-Adapt is evolving!

Learn about the Cal-Adapt enterprise and our mission to support California's climate change initiatives and preview our future plans.

Two Models: One for Hydrology and One for Operations

Soil-Water-Balance

- Hydrologic model
- Peer reviewed USGS sourced
- Estimates water balance (runoff and recharge)


GoldSIM

- Dynamically model complex systems
- Flexibility to build in operational controls

Interface: Calculated recharge and runoff to

the wellfield and Lake Henshaw

The LWS: From Schematic to GoldSIM Model

GoldSIM: Water System Storage and Operations

- Physical system: build the system with inputs and functions for...
 - Rainfall
 - Runoff
 - Percolation
 - Pumping efficiency
 - Seepage

- Lake area
- Water depth
- Evaporation
- Lake volume

- Water balance: account for inflows and outflows
- Future climate conditions: apply climate change factor inputs
- Investment scenarios: run model to generate yields under future infrastructure investments

LWS Investment Scenarios

Scenario #1: Low-range

Little-to-no investments (i.e., No new wells, no HABs mitigations, algicide treatments as-needed)

Scenario #2: HABs Control Only

Modest investments (i.e. replace wells as-needed, implement HABs mitigation, preventative HABs control)

Scenario #3: Baseline or "Mid-Range"

Reasonable investments (i.e., optimize wellfield, implement HABs mitigation, preventative HABs control)

Scenario #4: Max. Allowable Sustainable Yield

Higher investments (i.e., maximize wellfield, implement HABs mitigation, preventative HABs control)

Scenario #5: High-range

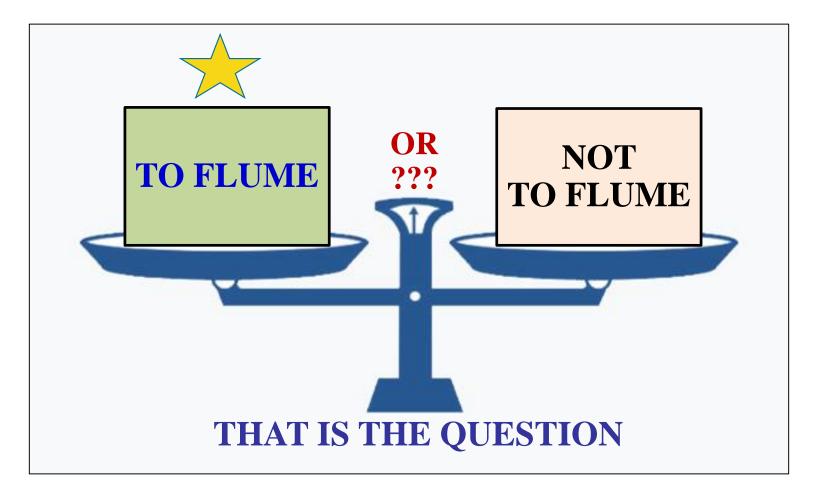
Maximized investments (i.e., maximize wellfield, implement HABs mitigation, preventative HABs control, and lake by-pass pipeline)

Results

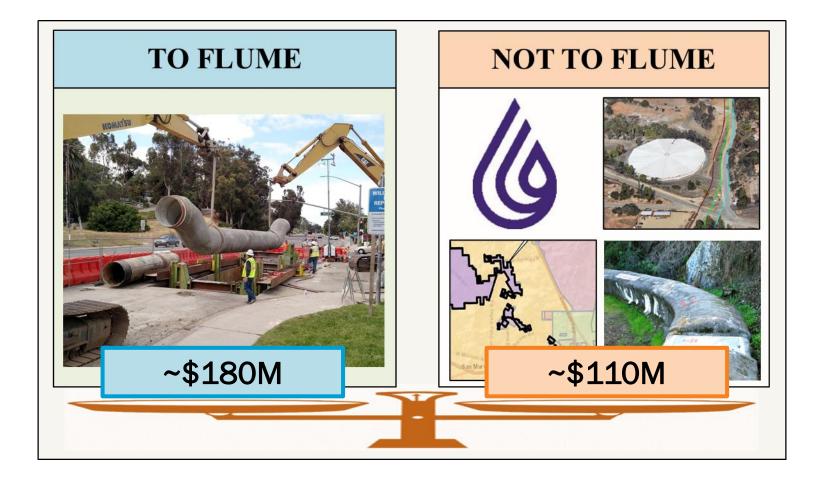
Table 4-2. Possible Range of Local Water System Investment Scenarios						
		Anticipated Range of Average Annual Local Yield (AFY)				
Local Water System Investment Scenario	Capital Costs ^a	Dry ^{b,c} (CMCC_CMS RCP8.5)	Baseline ^{b,c} (Historical)	Wet ^{b,c} (CanESM2 RCP8.5)		
 Scenario #1: Low-range Maintain wellfield as-is; no new wellheads No long-term in-lake HABs solution Respond to HABs using algaecide when needed No lake bypass pipeline or additional operational flexibility 	\$8M	1,700	2,500	3,000		
 Scenario #2: HABs Control Only Replace wellheads as-needed to preserve historical yield Implement long-term in-lake HABs solution Preventative HABs control using chemical treatment No lake bypass pipeline or additional operational flexibility 	\$13M	1,900	^{2,700} Used a	_{3,300} as basis 1		
 Scenario #3: Baseline or "Mid-Range" Optimize wellfield to achieve the historical, and can achieve sustainable yield over 12-months ^d Implement long-term in-lake HABs solution Preventative HABs control using chemical treatment No lake bypass pipeline or additional operational flexibility 	\$23M	4,700	afford	ability an 7,500		
 Scenario #4: Max. Allowable Sustainable Yield Maximize wellfield to achieve allowable sustainable yield e Implement long-term in-lake HABs solution Preventative HABs control using chemical treatment No lake bypass pipeline or additional operational flexibility 	\$37M	5,400	6,200	7,800		
 Scenario #5: High-range Maximize wellfield to achieve allowable sustainable yield • Implement long-term in-lake HABs solution. Preventative HABs control using chemical treatments Install a lake bypass pipeline for additional operational flexibility 	\$57M	6,900	7,200	7,900		

Take Aways

- Most climate futures, 80% of the modeled scenarios, predict the District can confidently rely on local water being available over a wide variety of climate conditions, and the economics weigh in favor of a <u>To Flume</u> project if modest investments are made to the LWS.
- Six of the 15 model runs (40%) predicted local yields greater than the EVWTP's current 40:60 local-to-imported water blend ratio limit, which would require additional investments in treatment system modifications to realize the full benefit of this additional yield.
 - a. Capital costs presented are in 2023 dollars, and only include District's share of costs (e.g., 70% for wellfield projects and 50% for Henshaw projects).
 - b. District's share of the anticipated average annual local yield in AFY estimated for the corresponding modelled scenario.
 - c. The District's share of local yield presented herein are results from the predictive climatological model described above in Section 4.
 - d. Warner Basin's historical yield is ~7,140 AFY which equates to a District share of ~1,750 AFY.
 - e. Warner Basin's maximum allowable sustainable yield is 9,125 AFY, which equates to a District share of ~2,400 AFY.
 - f. Legend:
 - a. Red = Future Flume replacement project is not economically viable (VID LW yield is less than 2,700 AFY).
 - b. Green = No modifications needed to Lake Wohlford or EVWTP keeping to 40:60 Local-to-Imported water blend ratio.
 - c. Yellow = Requires improvements to Lake Wohlford or EVWTP to local yields which are more than the current 40:60 Local-to-Imported water blend ratio limitation.


5. Project Affordability Including the HABs Plan

Speaker: J.P. Semper, P.E.



FLUME BALANCE SCALE INTERIM REVIEW The balance scale <u>continues</u> to favor To Flume

BACKGROUND: There is not a No Project option. The Not To Flume option has many components and costs

<u>30-Year NPV Cost Comparison</u>

- Dry Cli	4,700 AF/yr Mid-Ran		NPV / Ops. Term District	
	esent Value (NPV) Analysis, in			
	ost Summary To Flume vs. N TO FLUME		PARTNER NOT TO FLUME	
	Cost Component	30-Year NPV	Cost Component	30-Year NPV
	Flume Replacement	\$179M	Addtl. SDCWA Purchases	\$363M
	Local Water System	\$103M	Local Water System	\$103M
	Wells	\$30M	Wells	\$30M
	HABs Management	\$21M	HABs Management	\$21M
	All Other LWS Items	\$52M	All Other LWS Items	\$52M
	Water Treatment	\$28M	Exchange Benefit	-\$88M
	Flume O&M	\$11M	Delivery Reliability	\$52M
	Self-Treatment Benefit	-\$16M	Boot & Bennett Transfer	\$28M
			Flume Demolition	\$10M
			Reduced Pumping Costs	-\$10M
	TOTAL	\$305M	TOTAL	\$458M
_	"To Flume" Cost /	Advantage =	\$153M	

Cost per Acre-Foot Comparison

Avg. Local Yield District NPV / Ops. Term SDCWA Escalation Dry Climate Model Discount Rate: 4,700 AF/yr 30 Yrs 5.50% 4id-Range ▼ 23 Dollars alue (NPV) Analysis, m Net Pres NPV Cos ary -- To Flume vs. Not T TO FLUME PARTNER 🔻 NOT TO FLUME 30-Year 30-Year **Cost Component** Co ponent NPV NPV Flume R Addtl. SDCWA Purchases \$363M \$179M Local Water System \$103M \$103M Local Water System \$30M -- Wells \$30M -- Wells \$21M \$21M -- HABs Management -- HABs Management \$52M -- All Other LWS Items -- All Other LWS Items \$52M Water Treatment 28M **Exchange Benefit** -\$88M 1M Flume O&M \$52M Delivery Reliability M Self-Treatment Benefit ot & Bennett Transfer \$28M \$10M emolition Costs ¢10M Reduc TOTAL \$305M TOTAL \$458M "To Flume" Cost Advantage \$153M =

Breakeven Local Yield has increased

Table 4-2. Possible Range of	f Local Wat	er System Investme	ent Scenarios								
	Capital	Dry ^{b,c} (CMCC_CMS	Baseline ^{b,c}	Local Yield (AFY) ^{b,c} Wet ^{b,c} (CanESM2		Avg. Loca		DCWA Escalation	NPV / Ops. Terr	n District Discount Rate: 5.50%	
Local Water System Investment Scenario	Costs ^a	RCP8.5)	(Historical)	RCP8.5)		▼ 2,70			•	▼	
 Scenario #1: Low-range Maintain wellfield as-is; no new wellheads No long-term in-lake HABs solution Respond to HABs using algaecide when needed No lake bypass pipeline or additional operational flexibility 	\$8M	1,700	2,500	3,000			nt Value (NPV) Analy Summary To Flume		llars		
Scenario #2: HABs Control Only					1	*	TO FLUME	*	PARTNER 🔻	NOT TO FLUME	
 Replace wellheads as-needed to preserve historical yield Implement long-term in-lake HABs solution Preventative HABs control using chemical treatment No lake bypass pipeline or additional operational 	\$13M	1,900	2,700	3,300			Cost Component	30-Year NPV		Cost Component	30-Year NPV
flexibility							Flume Replacement	t \$179M		Addtl. SDCWA Purchases	\$209M
Scenario #3: Baseline or "Mid-Range"							Local Water System			Local Water System	\$103M
 Optimize wellfield to achieve the historical, and can achieve sustainable yield over 12-months^d 							Wells	\$30M		Wells	\$30M
Implement long-term in-lake HABs solution	\$23M	4,700	5,600	7,500			HABs Managemer	nt \$21M		HABs Management	\$21M
Preventative HABs control using chemical treatment							All Other LWS Iten	ns \$52M		All Other LWS Items	\$52M
 No lake bypass pipeline or additional operational flexibility 							Water Treatment	\$16M		Exchange Benefit	-\$103M
Scenario #4: Max. Allowable Sustainable Yield							Flume O&M	\$11M		Delivery Reliability	\$52M
Maximize wellfield to achieve allowable sustainable yield e							Self-Treatment Ben	efit -\$19M		Boot & Bennett Transfer	\$28M
Implement long-term in-lake HABs solution	\$37M	5,400	6,200	7,800						Flume Demolition	\$10M
Preventative HABs control using chemical treatment No lake bypass pipeline or additional operational										Reduced Pumping Costs	-\$10M
flexibility							TOTAL	\$290M		TOTAL	\$288M
 Scenario #5: High-range Maximize wellfield to achieve allowable sustainable yield • Implement long-term in-lake HABs solution. Preventative HABs control using chemical treatments Install a lake bypass pipeline for additional operational flexibility 	\$57M	6,900	7,200	7,900			"To Flume"	Cost Advantage	= \$0M		-

So, interest rates have increased. What's the impact?

Table 5-1. Interest Rate Increases from 2022 to 2023						
	2022 Interest Rate	2023 Interest Rate	% Increase			
Drinking Water State Revolving Fund (DWSRF)	1.10%	2.10%	91%			
Water Infrastructure Finance and Innovation Act (WIFIA)	3.50%	5.00%	43%			
Infrastructure State Revolving Fund (ISRF) Program	2.30%	4.36%	90%			
Municipal Bonds	3.50%	6.00%	171%			

Rolling back interest rates improves the cost advantage

Net Present Value (NPV) Analysis, in NPV Cost Summary To Flume vs. No		lars	
🛨 TO FLUME	*	PARTNER NOT TO FLUME	
Cost Component	30-Year NPV	Cost Component	30-Year NPV
Flume Replacement	\$188M	Addtl. SDCWA Purchases	\$459M
Local Water System	\$125M	Local Water System	\$125M
Wells	\$35M	Wells	\$35M
HABs Management	\$25M	HABs Management	\$25M
All Other LWS Items	\$66M	All Other LWS Items	\$66M
Water Treatment	\$35M	Exchange Benefit	-\$111M
Flume O&M	\$14M	Delivery Reliability	\$57M
Self-Treatment Benefit	-\$20M	Boot & Bennett Transfer	\$30M
		Flume Demolition	\$11M
		Reduced Pumping Costs	-\$12M
TOTAL	\$343M	TOTAL	\$560M
			-
"To Flume" Cost /	Advantage :	\$217M	

	Current Rates	Last Year's Rates
Discount Rate	5.50%	3.50%
Melded Costs of Funds	5.00%	3.00%
Water System Base Inflation	4.50%	3.50%
30-year NPV (Model Output)	\$153 M	\$217 M

Interest rates must double to tip the scales

TO FLUME	*	PARTNER NOT TO FLUME	
Cost Component	30-Year NPV	Cost Component	30-Year NPV
Flume Replacement	\$130M	Addtl. SDCWA Purchases	\$113M
Local Water System	\$41M	Local Water System	\$41M
Wells	\$14M	Wells	\$14M
HABs Management	\$11M	HABs Management	\$11M
All Other LWS Items	\$16M	All Other LWS Items	\$16M
Water Treatment	\$9M	Exchange Benefit	-\$28M
Flume O&M	\$3M	Delivery Reliability	\$31M
Self-Treatment Benefit	-\$5M	Boot & Bennett Transfer	\$17M
		Flume Demolition	\$6M
		Reduced Pumping Costs	-\$5M
TOTAL	\$179M	TOTAL	\$176M
			-

	Current Rates	Last Year's Rates
Discount Rate	5.50%	11.00%
Melded Costs of Funds	5.00%	10.00%
Water System Base Inflation	4.50%	4.50%
30-year NPV (Model Output)	\$153 M	-\$3 M

Findings and Recommendations

- 1. The <u>To Flume option retains</u> significant economic advantage, despite escalating capital and financing costs.
- 2. The <u>To Flume delivery costs are</u> ~\$1,000/AF cheaper than the Not To Flume option. Making local water treated at EVWTP more affordable to the District's customers than purchasing treated water.
- 3. Although interest rates are variable and hard to predict, sensitivity analysis shows that tipping the Balance Scale away <u>To Flume</u> is not plausible.

4. The District may move forward with confidence in:

- Finishing the alignment Study,
- Preparing the Flume Replacement project for full implementation,
- Advance the HABs long-term capital improvements, and
- Beginning planning efforts for future wellfield optimization.

6. Conclusions & Next Steps

Speaker: J.P. Semper, P.E.

Brown AND Caldwell

Summary of Conclusions: Phase 4 – Fine Screening

- 1. The Alignment Study has finished evaluating a broad range of alternatives and recommends Alternative 1 advance to conceptual design, while retaining the Beginning corridor of Alternative 2 as a contingency during final design.
- 2. The Flume Replacement Project requires a diverse funding portfolio; interest rates for the funding mechanisms which will plausibly comprise this portfolio have increased significantly.
- 3. Most climate futures, 80% of the modeled scenarios, predict the District can confidently rely on local water being available over a wide variety of climate conditions, and the economics weigh in favor of a To Flume project if modest investments are made to the LWS.
- 4. The <u>To Flume</u> option retains significant cost advantage in comparison to the <u>Not To Flume</u> option, and still supports LWS improvements at Lake Henshaw and Warner Basin wellfield; so long as the District's share of average annual local yield is above 2,700 AFY.

Final Conclusion & Next Steps

- The analyses presented herein supports the District's continued investment in HABs mitigation, wellfield improvements, and the future Flume Replacement project. Recommended next steps include:
 - A. Proceed with Phase 5 Recommended Alignment Report.
 - B. Inform DDW of the District's intent to advance the Flume's replacement.
 - C. Advance preparation of CEQA supporting documents.
 - D. Continue investigating HABs mitigation and wellfield optimization.

- D. Work with the District's Municipal Advisor to develop the project's funding strategy.
- E. Develop an RFP for the final design of the Flume Replacement Project.
- F. Use the planning, environmental, and financial documents prepared in the above steps as supporting documentation to pursue a diverse funding portfolio.

Thank you. Questions?

